Accretion-Ejection Instability, Quasi-Periodic Oscillations and a Magnetic Floods scenario

M. Tagger, with P. Varnière, J. Rodriguez, M. Cadolle-Bel

looking for QPO models (1)

Coherence

- => QPO can't be due to blobs
- => global organized motion of the gas
- In a state of the state of t
 - = standing waves patterns

looking for QPO models (2)

amplitude

=> QPO can't happen by random process (blobs)

hard to find excitation mechanism

I => must be due to

disk (+ corona ?) instabilities

NGC 1300

unstable normal modes are well known in accretion disks

waves and modes (1)

vertical structure

MRI: exchanges energy and angular momentum between fluid particles along field lines => needs to vary across the disk thickness $(k_{7}h > 1)$

waves and modes (2)

thin disk waves: perturbations nearly constant

across the disk thickness

(k_z h << 1)

energy and angular momentum are exchanged at differing radii by the action of forces:

 short-range (pressure):
 -> Papaloizou-Pringle (weak, short wavelength)

long-range:
 self-gravity -> galaxies
 Lorentz -> AEI

waves and modes (3)

k_zh << 1

=> thin disk
approximation OK
(perturbation constant
across disk thickness)

=> also allows 2D (r, ϕ) simulations (infinitely thin disk in vacuum)

... this gives the basics, but 3D effects will be important ...

thin disk waves

 disks admit spiral density waves (= sound waves modified by diff. rotation, epicyclic motion, self-G, Lorentz...)

- they also admit Rossby waves (propagate vorticity perturbations)
- differential rotation couples these 2 types of waves -> able to exchange energy and angular momentum

instability mechanisms (1)

- waves rotating faster than the gas tend to accelerate it
 - -> positive energy and angular momentum flux
- waves rotating slower tend to slow it down
 -> negative energy and angular momentum
- -> corotation radius where

 $rac{\omega}{m} = \Omega(r)$

 coupled waves at the same *w* inside and outside corotation can grow without changing the total energy and momentum

instability mechanisms (2)

- 1. coupling two spiral waves inside and outside corotation -> Swing amplification (galaxies)
- 2. coupling a spiral inside corotation to a Rossby wave at corotation -> corotation resonance
 - usually stabilizing for self-G and Pap.-Pringle
 - strongly destabilizing in (vertically) magnetized case
 -> Accretion-Ejection Instability
- 3. coupling of two Rossby waves (requires special profiles) -> Rossby Wave Instability

; much more efficient with $B \sim$ equipartition !

3D effects: disk/corona (jet?)coupling

la cherry sur le cake

- unmagnetized disks -> Rossby waves are Rossby waves -> store the accretion energy and momentum in a standing (-> saturation?)
- disk threaded by a vertical magnetic field: twisting of the footpoints -> propagate as Alfvén waves
 - -> a significant fraction of the energy and momentum re-emitted to the corona (see P.V.'s talk)
 - -> not a jet at this stage

; the corona is always active when QPO are present !

two types of modes

'p-mode" = essentially spirals inner spirals extract energy and momentum from inner disk, transfer them to outgoing spiral or vortex needs reflection at inner boundary "q-mode" (essentially Rossby) amplification by coupling vortices of opposite energies needs extremum of (magneto)vorticity -> extremum of density -> RWI OR relativistic rotation curve (diskoseismology: Nowak & Wagoner)

1: AEI and LF-QPO

application to LF-QPO: see J.R. and P.V's talks

2: MHD RWI and the quasi-periodicity in Sgr A* flares with F. Melia

 obs. + models -> flare when a blob from shocks in colliding stellar winds is captured in the disk at a few tens of r_G

(see S. Liu's talk)

- our model: the blob circularizes in the disk -> local extremum of L_B due to density maximum -> strongly unstable to (MHD) RWI
- -> flares and quasi-periodicity, with right order of magnitude
- similar but slower if unmagnetized

flares and quasi-periodicity in Sgr A*

flares and quasi-periodicity in Sgr A*

"light curve"= accretion at MSO oscillations at ~ .7 Ω MSO !!! the exact frequency is model-dependant -> affects spin estimates !!!!

IR: Genzel et al.

X: Belanger et al.

3. HF-QPO

- if the disk extends down to its MSO
- -> modes with relativistic rotation curve
 1. stress-free boundary -> plunging region
 -> m=1 mode
 - 2. assume a magnetosphere (a la B-Z) acting as reflecting boundary to waves

-> m=2,3,4... modes more unstable than m=1

- -> explains:
 - fixed frequencies
 - at 2,3,4... an unseen fundamental
 - active corona and disk -> SPL state

3. HF-QPO (2)

free inner boundary -> plunging region -> always an m=1 mode (1-armed spiral)

reflecting boundary -> unstable m=3 (or 2, or 4, 5...) mode

magnetic floods

first for the $\beta\text{-class}$ cycles of GRS 1915+105

• starting points, assuming the AEI is

responsible for the QPO :

• the transition to the low state must be due to

crossing a stability threshold

- i.e. the MRI exists for $\beta = 8\pi p/B^2 > 1$, the AEI for $\beta \sim 1$
- the AEI does not dissipate locally the accretion energy (-> no more disk heating) but transports it away by waves
 - -> naturally associated with low-hard state
- observations where the QPO appears

just before the transition (see J.R.'s talk)

-> LF-QPO = cause rather than effect of the state transition

magnetic floods (2)

our scenario : MRI in the high state -> gradual accumulation of poloidal magnetic flux in the inner disk region until $\beta \sim 1 \rightarrow AEI$ • => disk cools down => β further decreases (=> sharp transition) Intermediate peak : reconnection at inner radius • => blob ejection, => destruction of magnetic flux => return to

high β = high state

Belloni et al.'s 12 classes of variability for GRS 1915+105 ...

reduced to 3 basic states ...

Magnetic flood interpretation: Once in state C, reconnection necessary to reduce magnetic flux -> must go through A before return to B

so what about the magnetic flux?

• the magnetophere/solar wind interface has 2 configurations:

- parallel fields -> complex plasma physics...
- antiparallel fields -> prone to reconnection events

what about black hole/disk ?

- the horizontal flux in the disk can vary by buoyancy (Parker)
 -> can be expelled from the disk, recreated by dynamo
- the vertical flux is advected (although some people believe it isn't, because of magnetic diffusivity)

(remember that the MRI is ideal MHD!)

- -> must accumulate in a force-free structure around the BH
- the advected flux comes from the companion (or the disk itself) -> turbulent dynamo -> prone to field reversals
- -> we must expect the same dichotomy
- -> our scenario:

cycles and reconnection/ejection when antiparallel, quiescent when strong stored flux parallel to the disk flux

generalized magnetic flood

generalized magnetic flood

conclusions

• global modes provide the most physical explanation for QPOs: frequencies, coherence, amplitude non-axisymmetric modes can be strongly unstable 0 in a variety of conditions • if well understood, a key diagnostic of the final stages of accretion magnetic field plays a key role, especially poloidal flux accumulated in the central cavity between disk and BH leads to "Magentic Floods" for GRS 1915+105 and maybe for other microquasars B permits transport of accretion energy to the corona need full 3D MHD simulations with the relevant magnetic field topology and strength