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Lagrangian method

Eulerian and Lagrangian perturbations,

δQ(x, t) ≡ Q(x, t) − Q0(x, t),

∆Q(x, t) ≡ Q(x + ξ, t) − Q0(x, t)

Lagrangian perturbations:
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Dξ

Dt
,
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Perturbative expansion

Expansion of the Lagrangian density, L(n) ∼ ξn

L = L(0) + L(1) + L(2) + L(3) + L(4) + L(5) + O(ξ6),

D2ξi

Dt2
−

1

ρ
(γ − 1)∇i(p∇kξ

k)

−
1

ρ
∇k(p∇iξ

k) + ξk∇k∇iΦ = ai(ξ)

LHS → Linear terms

RHS → Nonlinear accelerations
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Linear Modes

Solution of the linear problem:

ξ(x, t) ≡ ξ(x) exp [iωt]

Eigenfunctions ξα(x) form (non)orthogonal basis with
respect to the scalar product,

〈

ξ, ξ′
〉

≡

∫

V

ρξ · ξ′dV

General perturbation (solution of the nonlinear
equation) can be expressed

ξ(x, t) =
∑

α

cα(t)ξα(x) + c̄α(t)ξ̄α(x)
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Non-linear oscillators

Governing equation for cα(t)

dcα

dt
+ iωαcα =

i

bα
〈ξα,a〉

or with cα = −i ω0
α Xα + δẊα one gets for α = U,D,

ẌU + (ω0
U )2XU = FU (XU , ẊU , XL, ẊL),

ẌL + (ω0
L)2XL = FL(XU , ẊU , XL, ẊL).

i.e. equations for coupled nonlinear oscillators.
Rebusco and Horák (multiple scales method).
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Main results

[1] Frequencies depend on amplitudes:

ν
U

= ν0
U

+ ν0
U
(CUUα2

U + CUDα2
D) + O3(α),

ν
D

= ν0
D

+ ν0
D
(CDUα2

U + CDDα2
D) + O3(α).

[2] Energy of oscillation is constant:

E0 = α2
U + Kα2

D = constant + O3(α),

α2
U = s E0, α2

D = (1 − s)
E0

K

[2] → [3] Amplitudes are (anti)correlated.
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Correlation of frequencies

The amplitudes are correlated also when,

E = E0 + ∆E(s),

or when the energy is a slowly varying function of s, or
when there is any physical connection between excitation
and damping. From the correlation of amplitudes [2], and
from the frequency-amplitude depenence [1], the
correlation of frequencies follows,

νU = ν0
U

+ F (s), νD = ν0
D

+ G(s).

Functions F (s) and G(s) are known for a given system.
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The Bursa line

For a weak non-linearity and a weak coupling,

F = F ′ s + O(s2), G = G′ s + O(s2).

We define,

X ≡ G′/F ′, A = X, B = ν0
U
− X ν0

D
,

and get from this simple mathematics the Bursa line:

νU = AνD + B,

i.e. a linear frequency-frequency correlation.
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The slopes of Bursa lines

Take a conservative system as an example.

A =
ν0

U

ν0
D

Γ, Γ =
(CUU − CUD/K)

(CDU − CDD/K)
6= 1,

B = −Aν0
D

(1 + E CDD/K) + ν0
U

(1 + E CUD/K).

Note: Γ 6= 1 → slopes of Bursa lines differ from 3/2 by a finite
amount.
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Bursa lines for six neutron stars (0)
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Bursa lines for six neutron stars (1)
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Bursa lines for six neutron stars (2)
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Bursa lines for six neutron stars (3)
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Bursa lines for six neutron stars (4)
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Bursa lines for six neutron stars (5)
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Bursa lines for six neutron stars (6)
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Bursa lines for black holes
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The A-B anti-correlation

A = −γ B + A0, γ =
1

ν0
D

[

1 + O(α2)
]

, A0 =
ν0

U

ν0
D

+ O(α2).
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The Atol and Z sources

A = (1.44 ± 0.09) − (1.49 ± 0.20)×10−3 Hz−1
B
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